Filters









Global Gender Gap

TotalTotal with genderFemales% FemalesGapMales% MalesOthers% Others
3,921,7673,759,890668,10417.769 %
3,090,23682.190 %1,5500.041 %

[Chinese Wikipedia] Gender Gap

TotalTotal with genderFemales% FemalesGapMales% MalesOthers% Others
225,829178,20233,82118.979 %
144,20080.919 %1810.102 %

[Chinese Wikipedia] Gender Gap by year of birth

Years of birthTotalTotal with genderFemales% FemalesGapMales% MalesOthers% Others
1800 → 1809717663619.201 %total under the threshold of 2258 people60290.799 %00.000 %
1810 → 1819888816698.456 %total under the threshold of 2258 people74791.544 %00.000 %
1820 → 1829972899808.899 %total under the threshold of 2258 people81991.101 %00.000 %
1830 → 18391,1131,030918.835 %total under the threshold of 2258 people93991.165 %00.000 %
1840 → 18491,2261,149948.181 %total under the threshold of 2258 people1,05591.819 %00.000 %
1850 → 18591,4581,330644.812 %total under the threshold of 2258 people1,26695.188 %00.000 %
1860 → 18692,0101,7981206.674 %total under the threshold of 2258 people1,67893.326 %00.000 %
1870 → 18792,6082,2501576.978 %total under the threshold of 2258 people2,09393.022 %00.000 %
1880 → 18893,5342,9591685.678 %
2,79094.289 %10.034 %
1890 → 18994,1493,3202698.102 %
3,05091.867 %10.030 %
1900 → 19095,8254,2934129.597 %
3,87990.356 %20.047 %
1910 → 19196,7754,89055111.268 %
4,33688.671 %30.061 %
1920 → 19297,2825,78274812.937 %
5,03487.063 %00.000 %
1930 → 19398,3166,48782812.764 %
5,65587.174 %40.062 %
1940 → 194910,6378,4691,22414.453 %
7,23985.476 %60.071 %
1950 → 195915,25411,1452,09018.753 %
9,05281.220 %30.027 %
1960 → 196916,53512,3812,99624.198 %
9,37575.721 %100.081 %
1970 → 197914,63813,1143,92629.937 %
9,17569.963 %130.099 %
1980 → 198921,23819,9196,77334.003 %
13,11665.847 %300.151 %
1990 → 199914,69813,7995,29038.336 %
8,49261.541 %170.123 %
2000 → 20091,07897554555.897 %total under the threshold of 2258 people42643.692 %40.410 %
2010 → 201941361644.444 %total under the threshold of 2258 people2055.556 %00.000 %

[Chinese Wikipedia] Gender Gap by country of citizenship

Country ▴ Total ▾ Total with gender ▾ Females ▾ % Fem. ▾ GapMales ▾ % Mal. ▾ Others ▾ % Oth. ▾
Qing dynasty10,66010,4001391.337 %
10,26098.654 %10.010 %
Ming dynasty3,2413,224461.427 %
3,16098.015 %180.558 %
Germany3,5323,53244512.599 %
3,08587.344 %20.057 %
France3,8513,84853013.773 %
3,31786.201 %10.026 %
United Kingdom6,5326,52996714.811 %
5,55885.128 %40.061 %
United States of America18,41218,4093,22617.524 %
15,14582.270 %380.206 %
People's Republic of China24,58616,5314,44426.883 %
12,07673.051 %110.067 %
Japan16,60316,4685,89335.785 %
10,56464.149 %110.067 %
Taiwan4,5854,4791,69437.821 %
2,78362.134 %20.045 %
South Korea4,3754,1931,63038.874 %
2,55961.030 %40.095 %

[Chinese Wikipedia] Gender Gap by occupation

Occupation ▴ Total ▾ Total with gender ▾ Females ▾ % Fem. ▾ GapMales ▾ % Mal. ▾ Others ▾ % Oth. ▾
baseball player3,1132,62360.229 %
2,61699.733 %10.038 %
military officer3,5543,466330.952 %
3,42898.904 %50.144 %
officer3,5543,466330.952 %
3,42898.904 %50.144 %
warrior11,0579,8011131.153 %
9,67698.725 %120.122 %
military personnel10,1908,9401031.152 %
8,82598.714 %120.134 %
combatant12,40211,0653433.100 %
10,70996.783 %130.117 %
coach2,6062,572893.460 %
2,48396.540 %00.000 %
coaching2,6062,572893.460 %
2,48396.540 %00.000 %
association football player12,65112,4414343.488 %
12,00696.503 %10.008 %
employee15,75813,5655263.878 %
13,02396.004 %160.118 %
engineer3,0512,9281364.645 %
2,78895.219 %40.137 %
historian2,6312,3541245.268 %
2,22894.647 %20.085 %
clergy2,8872,8331575.542 %
2,67494.388 %20.071 %
cleric2,8872,8331575.542 %
2,67494.388 %20.071 %
basketball player3,9283,7792255.954 %
3,55494.046 %00.000 %
believer3,0322,9661755.900 %
2,78994.032 %20.067 %
philosopher2,3282,2831406.132 %
2,13893.649 %50.219 %
university teacher5,2185,2143626.943 %
4,85093.019 %20.038 %
faculty member5,2535,2493676.992 %
4,88092.970 %20.038 %
cadre5,2545,2503687.010 %
4,88092.952 %20.038 %
academic5,9665,8924157.043 %
5,47592.923 %20.034 %
politician71,20849,3853,5537.194 %
45,79992.739 %330.067 %
job11,55411,3458197.219 %
10,51492.675 %120.106 %
work11,55411,3458197.219 %
10,51492.675 %120.106 %
profession11,54411,3358197.225 %
10,50492.669 %120.106 %
diplomat3,7853,1012327.481 %
2,86692.422 %30.097 %
humanities scholar7,4946,9775267.539 %
6,44492.361 %70.100 %
scientist13,15012,1489457.779 %
11,19492.147 %90.074 %
researcher18,40516,8961,3778.150 %
15,50391.755 %160.095 %
teacher6,9266,8405758.406 %
6,26391.564 %20.029 %
public employee5,8664,9234168.450 %
4,50291.448 %50.102 %
civil servant5,8654,9224168.452 %
4,50191.447 %50.102 %
social scientist4,5344,3403798.733 %
3,96191.267 %00.000 %
educator7,1197,0236128.714 %
6,40991.257 %20.028 %
erudite20,29218,7321,6588.851 %
17,05791.058 %170.091 %
director7,4446,4265288.217 %
5,84290.912 %560.871 %
bureaucrat6,0095,0474168.243 %
4,57590.648 %561.110 %
administrator6,0205,0584208.304 %
4,58290.589 %561.107 %
leader of organisation11,87410,6369909.308 %
9,58790.137 %590.555 %
executive11,90210,6649979.349 %
9,60890.098 %590.553 %
manager11,64410,4079789.398 %
9,37090.036 %590.567 %
jurist4,1263,76339410.470 %
3,36889.503 %10.027 %
businessperson13,71112,6731,34110.582 %
11,32489.355 %80.063 %
lawyer2,5602,52726810.605 %
2,25889.355 %10.040 %
painter2,6472,27624910.940 %
2,02588.972 %20.088 %
film director3,3763,30137611.390 %
2,92388.549 %20.061 %
leader16,12814,8441,64411.075 %
13,14188.527 %590.397 %
poet4,5014,13049211.913 %
3,63588.015 %30.073 %
director3,8243,63743411.933 %
3,20087.985 %30.082 %
non-fiction writer4,7884,45855712.494 %
3,89687.393 %50.112 %
organization2,5482,36931713.381 %
2,04886.450 %40.169 %
business2,5022,32331413.517 %
2,00586.311 %40.172 %
health professional2,4962,31731413.552 %
1,99986.275 %40.173 %
medical organization2,4962,31731413.552 %
1,99986.275 %40.173 %
service provider2,4962,31731413.552 %
1,99986.275 %40.173 %
player27,45226,5203,73614.087 %
22,78185.901 %30.011 %
competitive player27,44926,5173,73614.089 %
22,77885.900 %30.011 %
entrepreneur4,9004,58864213.993 %
3,94185.898 %50.109 %
film producer2,2702,25833814.969 %
1,91784.898 %30.133 %
screenwriter4,5994,44667015.070 %
3,77384.863 %30.067 %
producer3,2773,21051015.888 %
2,69583.956 %50.156 %
writer19,86917,9932,96816.495 %
15,00283.377 %230.128 %
position4,0304,02368717.077 %
3,33482.873 %20.050 %
ruler3,6493,64965317.895 %
2,99682.105 %00.000 %
sports figure34,73033,5616,03617.985 %
27,51881.994 %70.021 %
athlete34,28733,1916,02118.140 %
27,16381.838 %70.021 %
agent187,272155,37728,39718.276 %
126,81281.616 %1680.108 %
worker151,504121,00222,36718.485 %
98,47581.383 %1600.132 %
professional142,508113,35422,10719.503 %
91,09480.362 %1530.135 %
author27,38224,9524,91619.702 %
19,99980.150 %370.148 %
journalist3,7853,46968819.833 %
2,77579.994 %60.173 %
visual artist6,8186,2401,32121.170 %
4,90978.670 %100.160 %
media professional8,0967,6021,63221.468 %
5,95578.335 %150.197 %
creator44,31240,5378,75121.588 %
31,71578.237 %710.175 %
composer4,9774,7611,09522.999 %
3,65676.791 %100.210 %
television actor6,4916,4731,63525.259 %
4,82874.587 %100.154 %
novelist2,2712,09956526.918 %total under the threshold of 2258 people1,53373.035 %10.048 %
artist67,93662,65818,35529.294 %
44,21970.572 %840.134 %
songwriter2,5952,56886633.723 %
1,69365.927 %90.350 %
drawer2,4202,34087037.179 %
1,46462.564 %60.256 %
musician12,21511,6254,61839.725 %
6,98660.095 %210.181 %
performing artist6,0035,9262,59843.841 %
3,32156.041 %70.118 %
film actor8,8488,7554,02745.997 %
4,70753.764 %210.240 %
badminton player2,8522,8521,38848.668 %
1,46451.332 %00.000 %
actor20,78320,4969,97048.644 %
10,49651.210 %300.146 %
vocalist8,3388,1554,21651.698 %
3,92248.093 %170.208 %
singer8,2548,0724,21352.193 %
3,84247.597 %170.211 %
voice actor4,1494,0492,20954.557 %
1,83945.419 %10.025 %
celebrity2,4592,3541,35257.434 %
99042.056 %120.510 %
seiyū2,2642,2641,51466.873 %
75033.127 %00.000 %
fashion person3,8793,8692,99677.436 %
84621.866 %270.698 %
model3,6463,6452,90579.698 %
71419.588 %260.713 %